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The integral relaxation timet int of thermoactivating noninteracting single-domain ferromagnetic particles is
calculated analytically in the geometry with a magnetic fieldH applied parallel to the easy axis. It is shown that
the drastic deviation oft int

21 from the lowest eigenvalue of the Fokker-Planck equationL1 at low temperatures,
starting from some critical value ofH, is the consequence of the depletion of the upper potential well. In these
conditions the integral relaxation time consists of two competing contributions corresponding to the overbarrier
and intrawell relaxation processes.@S1063-651X~96!09409-3#

PACS number~s!: 05.40.1j

I. INTRODUCTION

At present, a single-domain ferromagnetic particle with
uniaxial anisotropy attracts the attention of researchers, in
particular as one of the models of information storage. The
hysteretic rotation of the magnetization of such a particle
over the potential barrier under the influence of an arbitrary
directed magnetic fieldH was studied by Stoner and Wohl-
fart @1#. At nonzero temperatures the magnetization vector of
the particle can surmount the barrier due to the thermal agi-
tation, as argued by Nee´l @2#; this effect becomes especially
pronounced for small particles having lower values of the
potential barrierDU. Such a ‘‘superparamagnetic’’ behavior
was observed in many experiments on magnetic liquids, on
polymers with magnetic inclusions, as well as on very thin
magnetic layers forming ‘‘islands.’’

An initial accurate calculation of the thermoactivation rate
of a uniaxial ferromagnetic particle is due to Brown@3#, who
derived the Fokker-Planck equation for an assembly of par-
ticles and solved it in the presence of a longitudinal magnetic
field H5Hez , perturbatively in the low-barrier case
DU!T and with the use of the Kramers transition-state
method@4# in the high-barrier limitT!DU ~the Boltzmann
constantkB is set to unity!. In both limiting cases considered
by Brown the time dependence of the average magnetization
^Mz& is a single exponential and the relaxation rate of ferro-
magnetic particles is given by the lowest eigenvalueL1 of
the Sturm-Liouville equation associated with the Fokker-
Planck equation. Subsequently,L1 was calculated numeri-
cally by Aharoni for arbitrary values ofDU/T without a
magnetic field@5# and with a longitudinal magnetic field@6#.
The correction terms for the high-barrier result forL1 were
given by Brown@7#. Later the analytical expression forL1 in
the high-barrier case was rederived in Ref.@8# with a more
rigorous method. In Refs.@9–11# various approximate ana-
lytical formulas forL1 for the arbitraryDU/T were pro-
posed. Recently the thermoactivation rate of single-domain
magnetic particles, as described byL1, was calculated nu-
merically by Coffeyet al. @12# for the arbitrarily directed
magnetic fieldH, i.e., in the geometry considered by Stoner
and Wohlfart@1#.

Apart from limiting cases, the Fokker-Planck equation for
an assembly of single-domain ferromagnetic particles cannot
be solved analytically. The magnetization relaxation curve
consists of an infinite number of exponentials and the overall
deviation of the linear dynamic susceptibility from the De-
bye form can be as large as about 7% forisotropicparticles
in a static magnetic field, as shown in Ref.@13#. In this case
it is convenient to introduce the so-called integral relaxation
time t int , determined as the area under the relaxation curve
after a sudden infinitesimal change of the magnetic field. The
quantity t int depends on all eigenvaluesLk , k51,2, . . . ,
and is therefore more informative thanL1; also it can be
directly measured. Moreover, it turned out that, unlikeL1,
the integral relaxation timet int can be calculatedanalytically
for uniaxial particles in the longitudinal magnetic field for
the arbitrary values of parameters@13# andt int

21 recovers the
analytical results of Brown forL1 in the asymptotic regions.

The integral relaxation time was also the subject of a re-
cent series of papers@14–16#, where it was called the ‘‘cor-
relation time.’’ In Ref. @14# t int for uniaxial ferromagnetic
particles was calculatedanalytically with an alternative
method for zero magnetic field, the resulting expression be-
ing, however, much more complicated than the original for-
mula for t int of Ref. @13#. In Ref. @16# a numericalcalcula-
tion of t int in the case with nonzero longitudinal magnetic
field was presented. In Ref.@15# the congeneric model of
rotating dipoles describing the dielectric relaxation was con-
sidered. The results of Ref.@14# show that in zero magnetic
field t int

21 is very close toL1 in the whole region ofDU/T.
On the contrary, numerical calculations of Ref.@16# reveal a
striking behaviort int

21@L1 for relatively small longitudinal
fields in the regionT!DU. This region of parameters was
not analyzed in Ref.@13#, whereas in Ref.@16# the effect was
not physically interpreted.

The aim of this paper is thus to consider in more detail the
integral relaxation time of uniaxial ferromagnetic particles in
the longitudinal magnetic field with the help of the method
of Ref. @13#. As we shall see, the effect found in Ref.@16#
can be explained by the depletion of the upper biased poten-
tial well, which leads to the dominance of the fast relaxation
inside the lower well in the integral relaxation time.

The remainder of the paper is organized as follows. In
Sec. II the derivation of the Fokker-Planck equation for an* Electronic address: garanin@physnet.uni-hamburg.de
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assembly of single-domain ferromagnetic particles from the
stochastic Landau-Lifshitz equation is outlined. In Sec. III
the known results for the thermoactivation rate of uniaxial
ferromagnetic particles are briefly reviewed. Then the inte-
gral relaxation timet int is introduced and analyzed, and it is
shown that the effect discovered in Ref.@16# can be ex-
plained without an explicit calculation oft int . In Sec. IV the
derivation of a general formula fort int of uniaxial particles in
a longitudinal magnetic field is presented and its behavior is
studied analytically and numerically for the whole region of
parameters. Some concluding remarks are given in Sec. V.

II. THE FOKKER-PLANCK EQUATION

The magnetization of a single-domain ferromagnetic par-
ticle M can be considered not too close to the Curie point
Tc as a vector of fixed lengthuM u5Ms(T), whose direction
can fluctuate due to the thermal agitation. This fluctuative
motion ofM can be described semiphenomenologically with
the help of the stochastic equation

Ṁ5g@M3~Heff1z!#2R~M !, ~2.1!

whereg is the gyromagnetic ratio,

Heff52
]W

]M
, W52H•M2KMz

2 ~2.2!

are the effective field and the energy density,H is the exter-
nal magnetic field, andK is the uniaxial anisotropy constant.
The energy of a particle is given by

H5VW, ~2.3!

whereV is the particle volume. The correlators of different
components of the white-noise fieldz(t) can be conveniently
written as

^z i~ t !z j~ t8!&5
2lT

gV
d i jd~ t2t8!. ~2.4!

The relaxation termR in ~2.1! describes, likez, the influence
of the heat bath on the particle and, as we shall see immedi-
ately, it has the Landau-Lifshitz form@17#

R5gl†M3@M3Heff#‡. ~2.5!

The Fokker-Planck equation corresponding to~2.1! is for-
mulated for the distribution function
f (N,t)5^d„N2M (t)…& on the sphereuNu5Ms , where the
average is taken over the realizations ofz. Differentiating f
over t with the use of~2.1! and calculating the right-hand
side of the resulting equation analogously to the derivations
given, e.g., in Refs.@18,19#, one comes to the Fokker-Planck
equation

] f

]t
52

]

]N H g@N3Heff#2R~N!1
glT

V FN3FN3
]

]NG G J f .
~2.6!

One can easily see that the equilibrium distribution function

f 0~N!}exp@2H~N!/T#, ~2.7!

is the solution of~2.6! if and only if R has the double-vector
product form~2.5!, which reflects the way of how magneti-
zation is coupled to the heat-bath fluctuations in~2.1!. If,
e.g., the correlators ofz components in~2.4! are anisotropic,
the expression~2.5! also changes@13#.

Brown used in his derivation of the Fokker-Planck equa-
tion @3# the stochastic equation of motion~2.1! with the Gil-
bert relaxation termR5gh@M3Ṁ # @20#. Redefining
g⇒gG in Brown’s equation, one can transform the latter to
the form ~2.1! and ~2.5! with g5gG /(11h2gG

2Ms
2) and

l5hgG, where the Langevin fieldz enters also the expres-
sion forR ~2.5! as being added toHeff . This means using a
stochastic model somewhat different from the one described
above. Both models coinside, however, in the actual small-
damping casehgMs!1.

The equation of motion for the magnetization
^M &5*d3NNf (N,t) of an assembly of particles can be eas-
ily derived from ~2.6! and has the form

d

dt
^M &5g^@M3Heff#&2gl^†M3@M3Heff#‡&2LN^M &

~2.8!

@cf. ~2.1!#, where the characteristic diffusional relaxation rate
LN is given by

LN[tN
21[2glT/V. ~2.9!

One can see that even in the case without anisotropy
Heff5H, this equation is not closed since it is connected to
the second-order correlation functionŝMiM j& in the
Landau-Lifshitz term of~2.8!. Therefore, the resonance and
relaxational behavior of the Fokker-Planck equation~2.6! is
in generalnot described by Lorentz and Debye curves, and
the deviations from the latter can be about 7%@13#. Neglect-
ing these features, one can obtain thebest isolatedequation
of motion for the magnetization of an assembly of particles
in the isotropic caseK50, choosing the distribution function
in the form f (N,t)}exp@VA(t)N/T# @cf. ~2.7!#, where the
temporal evolution of the vectorA(t) is governed by~2.8!.
Such a generalized Landau-Lifshitz-Bloch equation@13#
contains both transverse and longitudinal relaxation terms. In
the high-temperature limit~in the isotropic caseK50 this
requiresT@VHMs) Eq. ~2.8! becomes closed and takes on
the form of the Bloch equation with the relaxation rate
LN .

III. THE LOWEST EIGENVALUE L1 AND THE
INTEGRAL RELAXATION TIME t int

To parametrize effects of thermal agitation on ferromag-
netic particles, it is convenient to introduce the dimension-
less energyu[H/T5VW/T, which in the case with a lon-
gitudinal magnetic field has the form

u52jx2ax2, x[cosu5Mz /Ms , ~3.1!

with

j[
VHMs

T
, a[

VKMs
2

T
. ~3.2!
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The top of the barrier corresponds to

x5xm52h, h[
j

2a
5

H

2KMs
. ~3.3!

The barrier heightDu[u(xm)2u(21) is given by

Du5a2j1j2/~4a!5a~12h!2. ~3.4!

In the casea,j;1 a general solution of the Fokker-
Planck equation~2.6! cannot be found analytically and the
relaxation of any initial state is described by a sum of expo-
nentials of the typeAiexp(2Lit), whereL i are the eigenval-
ues of the Sturm-Liouville equation associated with the
Fokker-Planck equation~for the longitudinal relaxation all
L i are real!. In the low-barrier casea,j!1, the problem can
be solved perturbatively@3# and the longitudinal relaxation is
governed with a good accuracy by the single exponential
corresponding to the lowest eigenvalueL1, which is given
by @3#

L1>LNS 12
2

5
a1

48

875
a21

1

10
j21••• D , ~3.5!

with LN determined by~2.9!.
In the high-barrier casea@1, the relaxation is dominated

again byL1 describing now the slow overbarrier thermoac-
tivation, whereas all other eigenvaluesL i correspond to the
fast intrawell processes with small amplitudes. Brown’s re-
sult for the high-barrier case, which was derived with the
help of the transition-state method of Kramers@4#, can be
written in the form@6#

L1>LNp21/2a3/2~12h2!$~11h!exp@2a~11h!2#

1~12h!exp@2a~12h!2#%, ~3.6!

where h is given by ~3.3!. The factor (11h) before the
exponential function in~3.6! is irrelevant since the first term
of ~3.6! is only essential forj&1 which for a@1 implies
h!1. We will, however, keep this factor here and in analo-
gous expressions below for the sake of symmetry.

In the intermediate regiona,j;1, it is convenient to in-
troduce the integral relaxation time determined as the area
under the magnetization relaxation curve after a sudden in-
finitesimal change of the applied fieldH by DH at t50:

t int[E
0

`

dt
^Mz~`!&2^Mz~ t !&

^Mz~`!&2^Mz~0!&
. ~3.7!

Unlike L1, the integral relaxation timet int can be found
analytically from the Fokker-Planck equation~2.6! in the
whole range of parameters in the geometry with a longitudi-
nal magnetic field@13#, as will be described in detail in Sec.
IV. Here we discuss the results of recent calculations of
t int by Coffeyet al. @14,16#. At first note that the relaxation
curve can be represented in the form

^Mz~`!&2^Mz~ t !&5DHxz(
i
Aie

2L i t, ~3.8!

wherexz5]^Mz&/]H is the static longitudinal susceptibility.
This form of writing the response function is more conve-

nient than that of Refs.@14,16# since here the amplitudes
Ai obey the sum rule( iAi51. Now t int of ~3.7! can be
rewritten as~cf. @14#!

t int5(
i
AiL i

21 . ~3.9!

In Refs.@14,16# the integral relaxation timet int is called the
correlation time since according to the fluctuation-dissipation
theoremt int can be also considered as the area under the
autocorrelation function. The term ‘‘correlation time,’’ how-
ever, seems to be rather artificial because the autocorrelation
function does not appear in the actual calculation oft int with
the help of~3.7! or ~3.9!, as well as in Sec. IV below, and
really considering autocorrelations would imply going un-
necessarily beyond the Fokker-Planck equation.

According to the numerical results of Coffeyet al. @14# in
a zero magnetic field the amplitudesAi satisfy Ai!A1,
i52,3, . . . , for all values ofa and the difference between
L1 and t int

21 is small everywhere reaching only 1.2% at
a55. On the contrary, the subsequent calculations forH
Þ0 @16# revealed a striking behaviort int

21@L1 at sufficiently
low temperatures. The formal reason for this is thatA1 be-
comes small in this region and the terms withk54,5 domi-
nate in~3.9!, as shown in Ref.@16#. But the effect can also be
interpreted on a physical level as the consequence of the
depletion of the upper potential well and quantitatively de-
scribed without a general calculation oft int , as will be dem-
onstrated below.

The reduced equilibrium magnetization of an ensemble of
noninteracting ferromagnetic particlesmz[^Mz&/Ms is
given by the generalized Langevin functionB(j,a):

mz5E
21

1

x f0~x!dx5
]

]j
lnZ5B~j,a!, ~3.10!

where, according to~2.7! and ~3.1!,

f 05
1

Z
exp~2H/T!5

e2u

Z
, Z5E

21

1

e2udx. ~3.11!

In the high-barrier casea@1, the partition functionZ is a
sum of two contributions corresponding to the two potential
wells Z5Z11Z2 ,

Z6>
ea6j

2a6j F11
2a

~2a6j!2
1••• G , ~3.12!

where the correction terms account for the curvature of the
potential-energy functionu of ~3.1!. Neglecting these small
terms, one can representB(j,a) of Eq. ~3.10! by two mutu-
ally complementing expressions

B~j,a!>tanhj2
1

2a S j

cosh2j
1tanhj D1

j

~2a!2

~3.13!

for 1;j!a and

B~j,a!>122e22j
2a1j

2a2j
2

1

2a1j
~3.14!
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for 1!j;a. Here, in the first limiting expression the second
term is small and irrelevant; the third term is kept since it
yields a contribution to the derivativeB85]B/]j that is not
exponentially small forj@1. In the second limiting expres-
sion ~the strong-bias case! the deviation ofB from unity
separates into two parts: The second exponentially small
term is due to the population of the upper well (x;21),
whereas the third one accounts for the thermal agitation in
the lower well (x;1). The response of magnetization to an
infinitesimal change of the magnetic fieldDH is related to
the derivative of the generalized Langevin functionB8:
Dm5B8DH/T. The latter can be determined from~3.13!
and ~3.14! and put in the whole region 2a2j@1 into the
unique expression

B8>BB81BW8 >
1

cosh2j

2a1j

2a2j
1

1

~2a1j!2

>
12h2

c2~j,h!
1

1

~2a1j!2
, ~3.15!

where

c~j,h![
1

2
@~11h!e2j1~12h!ej# ~3.16!

andBB8 accounts for the redistribution of particles between
the two wells across the potential barrier andBW8 that inside
the lower well. Henceforth we will use the second of the
equivalent forms ofB8 in ~3.15! for the sake of symmetry
@cf. the comments after Eq.~3.6!#.

Now, in the low-temperature strong-bias casea,j@1, the
relaxation curve~3.8! consists of only two exponentials~see
Fig. 1!

mz~`!2mz~ t !5DmBexp~2tL1!1DmWexp~2tLW!,
~3.17!

whereL1 is given by~3.6! and

LW>2glHeff5LN~2a1j! ~3.18!

is the temperature-independent relaxation rate in the lower
well, which can be obtained from the deterministic Landau-
Lifshitz equation~2.1! and ~2.5! without z. The integral re-
laxation timet int calculated according to the definition~3.7!
can be written as

t int>t int,B1t int,W , ~3.19!

where

t int,B5
BB8

B8
L1

21 , t int,W5
BW8

B8
LW

21 . ~3.20!

One can see that in the low-temperature strong-bias case
a,j@1, the barrier contributiont int,B into the integral relax-
ation timet int can be substantially reduced due to the deple-
tion of the upper potential well manifesting itself in the ex-
ponential smallness of the magnetization change due to
overbarrier transitionsDmB}BB8 @see~3.15!#. In this case the
overbarrier and intrawell terms in~3.19! can compete with
each other sinceL1 is exponentially small andBW8 /B8>1.
On the contrary, for small or zero bias one hasBB8 /B8>1
and BW8 /B8!1, so that the intrawell process can be com-
pletely ignored.

The expressions fort int,B andt int,W in ~3.20! are valid in
the whole high-barrier region 2a2j@1 and will be obtained
independently in the framework of a general method in Sec.
IV. In the strong-bias casej@1, the barrier contribution
t int,B in ~3.20! can be represented with the use of~3.6!,
~3.15!, and~3.3! as

t int,B516LN
21~pa!1/2

~11h!2

~12h!3
exp@a~126h1h2!#.

~3.21!

It changes its behavior as a function ofa at the critical value
of the applied field

h5hc5322A2'0.17, ~3.22!

which is substantially smaller than the field of the barrier
disappearanceh51 @see~3.3! and~3.4!#. For h in the vicin-
ity of hc the exponential factor in~3.21! can be written as
exp@24A2a(h2hc)#. It can be seen that forh,hc the quan-
tity t int,B exponentially increases with lowering temperature
~i.e., with increasing ofa) and brings the dominant contri-
bution intot int of Eq. ~3.20!. On the contrary, forh.hc the
quantity t int,B exponentially decreases at largea, so that
t int tends to the temperature-independent valuet int,W of
~3.18!. One can also see that forh only slightly higher than
hc the quantityt int,B increases asa

1/2 at smallera; then the
decreasing exponential becomes to dominate. Thus, in this
caset int,B , and hencet int of ~3.20!, has a maximum at some
a@1 andt int

21 has the corresponding minimum, as was ob-
tained numerically in Ref.@16#. It should be noted, however,
that the actual position of this minimum can be described
only taking into account in~3.20! the general form ofB8
given by ~3.15!.

The results above completely describe the observations
made in Ref.@16# in the low-temperature strong-bias region.

FIG. 1. Schematic look of the two-exponential relaxation curve
of single-domain ferromagnetic particles in the strong-bias high-
barrier casea,j@1.
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In the next section we present the analytical calculation of
t int in the whole range of parameters.

IV. CALCULATION OF THE INTEGRAL RELAXATION
TIME t int

All the information about the relaxation curve~3.8! is
contained in the longitudinal linear dynamic susceptibility
x(v). In the presence of a small alternating field
DHz(t)5DHz0exp(2ivt) the deviation of the distribution
function f from the equilibrium function~3.11! can be rep-
resented as

d f5 f 0~x!q~x!VMsDHz~ t !/T, ~4.1!

where the functionq(x) satisfies an equation following from
~2.6!:

S ddx12ax1j D ~12x2!
dq

dx
12ivLN

21q

5~12x2!~2ax1j!22x. ~4.2!

The dynamic susceptibility of the particle’s assembly is then
determined by

xz~v!5
VMs

2

T E
21

1

dx f0~x!q~x!. ~4.3!

Using the linear-response theory one can easily show that
xz(v) can be represented in the form

xz~v!5xz(
i

Ai

12 ivL i
21 , ~4.4!

wherexz , Ai , andL i are the parameters of the magnetiza-
tion relaxation curve~3.8!. Calculating this sum of Debye
terms requires knowing all eigenvaluesL i and amplitudes
Ai associated with the Fokker-Planck equation and cannot be
done analytically in the general case. Accordingly, Eq.~4.2!
has no general analytical solution and its behavior is to be
studied analytically in the limiting cases of high and low
temperatures and high and low frequencies, as was done in
Ref. @13#. In particular, generating high-frequency expan-
sions ofx(v) does not require solving differrential equations
and can be carried out up to high orders. The corresponding
results, however, are not very interesting here since they de-
scribe only fast intrawell processes. The information about
the slow process of thermoactivation is contained in the low-
frequency expansion ofx(v), which can be written in the
form

xz~v!>xz~11 ivt int1••• !. ~4.5!

Comparing~4.5! with ~4.4!, one can show that the quantity
t int in ~4.5! is exactly the integral relaxation time given by
the formula~3.9!.

The perturbative solution of~4.2! for smallv can be done
analytically since forv50 there are only terms of the type
q8(x) andq9(x) in the equation. Hence one can introduce a
new variableg(x)[q8(x) and solve successively the first-
order differential equations forg(x) andq(x). After calcu-

lation of the susceptibility~4.3! one gets the analytic expres-
sion the for integral relaxation timet int @13#:

t int5
2

LNB8
E

21

1 dx

12x2
F2~x! f 0

21~x!, ~4.6!

where f 0 is given by~3.11!, B85]B/]j, and

F~x!5E
21

x

~B2x8! f 0~x8!dx8. ~4.7!

Recalling the general formula forB(j,a) Eq. ~3.10!, one can
conclude thatF(61)50, i.e., the integrand of~4.6! goes to
zero atx561. The functionF(x) can be easily calculated
analytically in two particular cases. In the unbiased case
j50 one gets

F~x!5
1

2a
@ f 0~1!2 f 0~x!#, f 0~x!5

exp~ax2!

Z~a!
,

~4.8!

whereas in the isotropic casea50

F~x!5
f 0~x!

j Fcothj2x2
exp~2jx!

sinhj G ~4.9!

with f 0(x)5jexp(jx)/(2sinhj). An alternative analytical ex-
pression fort int in the particular casej50 was derived re-
cently by Coffeyet al. @14# with the help of the development
of the solution of the Fokker-Planck equation in Legendre
polynomials. Their expression contains Kummer functions
and is essentially more complicated than~4.6! with ~4.8!.

Now we proceed with the analysis of the general expres-
sion ~4.6! in different limiting cases. In the high-temperature
limit a,j!1, the calculation can be done perturbatively with
respect toa andj. In particular, at very large temperatures
one has f 0(x)>1/2, B>0, B8>1/3, and F>(12x2)/4.
Thus the whole phase space of the ferromagnetic particle,
21<x<1, contributes to~4.6! and one getst int

21>LN . A
more accurate calculation yields

t int
21>LNS 12

2

5
a1

2

35
a21

1

9
j21••• D , ~4.10!

which is very close to Brown’s expression forL1 given by
~3.5!.

In the unbiased low-temperature casej50, a@1, the
functionF given by~4.8! is constant in the main part of the
x interval, except for near the borders. Thus the main contri-
bution to the integral~4.6! comes from the barrier region
x;a21/2!1 cut by the functionf 0

21}exp(2ax2). With the
use of~3.12! with j50 one gets, in the leading order,

t int
21>2LNp21/2a3/2e2a, ~4.11!

which coincides with the expression forL1 in ~3.6! in the
unbiased caseh50. It is not difficult to calculate also the
correction terms for the formula~4.11!, which coincide with
those given by Brown@7#. In the isotropic strong-field limit
a50, j@1, the functionF given by ~4.9!, as well as the
whole integrand of~4.6!, is peaked in the vicinity of the
potential minimumx51, where the exponentially small term
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with exp(2jx) can be neglected. In the leading order one
gets fort int

21 the temperature-independent expression~3.18!
with a50.

Now we consider, as a corollary, the biased low-
temperature casejÞ0, a@1. As argued in Sec. III, in this
caset int can be the sum of intrawell and overbarrier contri-
butions,t int,W and t int,B @see~3.19!#. Accordingly, the inte-
grand of~4.6! can consist, fora,j@1, of two peaks~see Fig.
2! corresponding to the barrier topx;xm52h in ~3.3! and
the lower wellx;1. The functionF(x) of ~4.7! is deter-
mined by two well-separated potential wells and is therefore
practically independent ofx for x not too close to the bound-
aries. In the the lower-well region 12x!1, the calculation
yields F(x) as a sum of two contributionsF5FB1FW ,
where to the leading order

FB~x!>
12h2

2c2~j,h!
$12exp@2~2a1j!~12x!#%, ~4.12!

c(j,h) is given by~3.16!, and

FW~x!>~12x!exp@2~2a1j!~12x!#. ~4.13!

The termFB of ~4.12! goes over to the constant mentioned
above in the region not too close to the border
@12x@1/(2a1j)!1#. Forj@1 it acquires the small factor
e22j accounting for the depletion of the upper potential well
@cf. ~3.15! and ~3.20!#. On the contrary, such a factor is not
present inFW in ~4.13!, but the corresponding contribution
into t int given by ~4.6! is reduced due tof 0

21(x). Now cal-
culating the integral~4.6! one gets Eq.~3.19!, where

t int,B>
BB8

B8

p1/2

2LNa3/2

exp@a1j2/~4a!#

~12h2!c~j,h!
~4.14!

coincides with the expression given by~3.20! and in the
strong-bias case

t int,W
21 >LW>LNS 2a1j2

10a1j

2a1j D . ~4.15!

In ~4.15! @cf. ~3.18!# the correction terms, in particular of the
type present in~3.12!, have been taken into account.

Numerical calculation of the integral relaxation timet int
given by ~4.6! in the whole range of parametersa and j
poses no difficulties. For the representation of the results for
the arbitrary relation betweena and j, including the case
a50, it is more convenient to use the variable

a[2a1j5
VMs

gT
vR , ~4.16!

where vR5g(2KMs1H) is the ferromagnetic resonance
frequency in the lower potential well. One can see that
2a5a/(11h) andj5ah/(11h). In terms of the variables
a and h the asymptotic formula~4.15! can be rewritten as
t int,W

21 >LN@a2(51h)/(11h)#, which shows that all curves
t int,W

21 (a) for differenth are parallel to each other. The results
of the numerical integration in the formula~4.6! are repre-
sented in Fig. 3. These results confirm all the considerations
made above, as well as the numerical findings of Coffey
et al. @16#.

V. DISCUSSION

The formula for the integral relaxation timet int of an
assembly of single-domain ferromagnetic particles~4.6! is

FIG. 2. Integrand of the formula~4.6! for the integral relaxation
time t for different values of parameters.

FIG. 3. Inverse of the integral relaxation timet as a function of
the parametera of ~4.16!. Circles denote data of Coffeyet al. @16#
taken from their Table II.
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the all-temperature solution of the problem of the thermoac-
tivation escape rate of the particles over a potential barrier.
In the unbiased casej5h50, the quantityt int is very close
in the whole temperature range to the inverse of the lowest
eigenvalue of the Fokker-Planck equationL1. Besides, in
comparison to the latter,t int has more physical significance
and is given by a simple quadrature~4.6! with ~4.8!. In the
high-barrier strong-bias casea,j@1, as a result of the deple-
tion of the upper potential well the relaxation is described by
two exponentials with uncomparable characteristic times,
which correspond to the intrawell and overbarrier processes.
In this case it would be naturally an oversimplification to
describe the relaxation with a common integral relaxation
time, but it is possible to separate analytically both contribu-
tions in the general formula~4.6! @see~4.14! and~4.15!# and
thus to give a complete description of the relaxation process.

Going beyond the integral relaxation time, one can con-
ceive the calculation of the whole dynamic susceptibility
xz(v) given by the formula~4.4!. In this case the numerical
approach of Ref.@16#, consisting of the calculation of all
Ai andL i , is really useful. However, for the model with a
high potential barrier such a calculation is probably not very
interesting for the reasons mentioned above: there are, to a
good accuracy, only one~in the unbiased case! or two ~in the
strong-bias case! terms in~4.4!. More appealing would be to
produce calculations for an isotropic model in a field
(a50, jÞ0) where the eigenvaluesL i are not so well sepa-
rated. In this case deviations from the Debye form of the

longitudinal dynamic susceptibility were studied analytically
in Ref. @13#, where it was shown that these deviations can be
about 7% atj'3. In Ref. @13# an effective two-relaxator
formula for xz(v) was proposed, which was argued to de-
scribe the main part of deviations from the simple Debye
form. It would be interesting to check and improve these
results by a direct numerical calculation.

One more unsolved problem is the calculation of the
transverseintegral relaxation time of superparamagnetic par-
ticles. Up to now it seems to be considered only for the
model of rotating dipoles in Ref.@15#.

Although many experimental investigations are currently
done on systems showing superparamagnetism, these inves-
tigations are practically confined to the certification of a su-
perparamagnetic behavior and to rough estimation of relax-
ation times. It would be worth making more purposeful
measurements aimed at a comparison with existing theories.
For this purpose it would be important to eliminate the dis-
tribution of particle volumes and orientations of the anisot-
ropy axes.
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