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Integral relaxation time of single-domain ferromagnetic particles
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The integral relaxation time;,, of thermoactivating noninteracting single-domain ferromagnetic particles is
calculated analytically in the geometry with a magnetic fidldpplied parallel to the easy axis. It is shown that
the drastic deviation of;.! from the lowest eigenvalue of the Fokker-Planck equafigrat low temperatures,
starting from some critical value &, is the consequence of the depletion of the upper potential well. In these
conditions the integral relaxation time consists of two competing contributions corresponding to the overbarrier

and intrawell relaxation process¢$1063-651X96)09409-3

PACS numbe(s): 05.40:+j

I. INTRODUCTION Apart from limiting cases, the Fokker-Planck equation for
an assembly of single-domain ferromagnetic particles cannot
At present, a single-domain ferromagnetic particle withbe solved analytically. The magnetization relaxation curve
uniaxial anisotropy attracts the attention of researchers, igonsists of an infinite number of exponentials and the overall
particular as one of the models of information storage. Thejeviation of the linear dynamic susceptibility from the De-
hysteretic rotation of the magnetization of such a particleoye form can be as large as about 7% ifmtropic particles
over the potential barrier under the influence of an arbitrary, 5 static magnetic field, as shown in REE3]. In this case
directed magnetic fielth was studied by Stoner and Wohl- i js convenient to introduce the so-called integral relaxation

fart [1]. At nonzero temperatures the magnetization vector ofime - determined as the area under the relaxation curve
the particle can surmount the barrier due to the thermal agis

i d by NBE2T: this effect b ol after a sudden infinitesimal change of the magnetic field. The
ation, as argued by E‘2]! IS €efiect becomes especially guantity 7;,; depends on all eigenvaluet,, k=1,2,.. .,
pronounced for small particles having lower values of the

otential barrieAU. Such a “superparamagnetic” behavior and is therefore more informative thaly; also it can be
P . PeTP 9 irectly measured. Moreover, it turned out that, unlike,

was observed in many experiments on magnetic liquids, OFL' ) o .
the integral relaxation time;,; can be calculatednalytically

polymers with magnetic inclusions, as well as on very thin o , . o n
magnetic layers forming “islands.” for uniaxial particles in the longitudinal magnetic field for

An initial accurate calculation of the thermoactivation ratethe arbitrary values of parametdts3] and 7, recovers the
of a uniaxial ferromagnetic particle is due to Broyaj, who  analytical results of Brown foA ; in the asymptotic regions.
derived the Fokker-Planck equation for an assembly of par- The integral relaxation time was also the subject of a re-
ticles and solved it in the presence of a longitudinal magneticent series of papefd4-164, where it was called the “cor-
field H=He,, perturbatively in the low-barrier case relation time.” In Ref.[14] r, for uniaxial ferromagnetic
AU<T and with the use of the Kramers transition-stateparticles was calculatednalytically with an alternative
method[4] in the high-barrier limitT<AU (the Boltzmann method for zero magnetic field, the resulting expression be-
constankg is set to unity. In both limiting cases considered ing, however, much more complicated than the original for-
by Brown the time dependence of the average magnetizatiomula for 7;,; of Ref. [13]. In Ref.[16] a numericalcalcula-
(M) is a single exponential and the relaxation rate of ferrodion of 7, in the case with nonzero longitudinal magnetic
magnetic particles is given by the lowest eigenvalugof  field was presented. In Ref15] the congeneric model of
the Sturm-Liouville equation associated with the Fokker-rotating dipoles describing the dielectric relaxation was con-
Planck equation. Subsequently; was calculated numeri- Sidered. The results of RgfL4] show that in zero magnetic
cally by Aharoni for arbitrary values oAU/T without a  field 7, is very close toA; in the whole region ofAU/T.
magnetic field 5] and with a longitudinal magnetic fie[d]. On the contrary, numerical calculations of Rif6] reveal a
The correction terms for the high-barrier result foy were  striking behaviorq-i;t1>/\1 for relatively small longitudinal
given by Brown[7]. Later the analytical expression far, in  fields in the regionT<AU. This region of parameters was
the high-barrier case was rederived in R@f with a more  not analyzed in Ref.13], whereas in Ref.16] the effect was
rigorous method. In Ref§9—11] various approximate ana- not physically interpreted.
lytical formulas for A, for the arbitraryAU/T were pro- The aim of this paper is thus to consider in more detail the
posed. Recently the thermoactivation rate of single-domaitntegral relaxation time of uniaxial ferromagnetic particles in
magnetic particles, as described Ay, was calculated nu- the longitudinal magnetic field with the help of the method
merically by Coffeyet al. [12] for the arbitrarily directed of Ref.[13]. As we shall see, the effect found in R¢16]
magnetic fieldH, i.e., in the geometry considered by Stonercan be explained by the depletion of the upper biased poten-
and Wohlfart[1]. tial well, which leads to the dominance of the fast relaxation
inside the lower well in the integral relaxation time.
The remainder of the paper is organized as follows. In
" Electronic address: garanin@physnet.uni-hamburg.de Sec. Il the derivation of the Fokker-Planck equation for an
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assembly of single-domain ferromagnetic particles from thes the solution 0f2.6) if and only if R has the double-vector
stochastic Landau-Lifshitz equation is outlined. In Sec. Illproduct form(2.5), which reflects the way of how magneti-
the known results for the thermoactivation rate of uniaxialzation is coupled to the heat-bath fluctuations(2ql). If,
ferromagnetic particles are briefly reviewed. Then the intee.g., the correlators af components ir{2.4) are anisotropic,
gral relaxation timer;, is introduced and analyzed, and it is the expressiori2.5) also changef13].
shown that the effect discovered in R¢i6] can be ex- Brown used in his derivation of the Fokker-Planck equa-
plained without an explicit calculation af,;. In Sec. IV the  tion [3] the stochastic equation of motigR.1) with the Gil-
derivation of a general formula far,; of uniaxial particles in ~ bert relaxation termR=yy[MXxM] [20]. Redefining
a longitudinal magnetic field is presented and its behavior is)= y4 in Brown’s equation, one can transform the latter to
studied analytically and numerically for the whole region ofthe form (2.1) and (2.5) with y=yg/(1+ 7?y3M?2) and
parameters. Some concluding remarks are given in Sec. V, = 77vs, Where the Langevin field enters also the expres-
sion forR (2.5 as being added tbl.%. This means using a

Il. THE FOKKER-PLANCK EQUATION stochastic model somewhat different from the one described

The magnetization of a single-domain ferromagnetic IC)ar_above. Both models coinside, however, in the actual small-

ticle M can be considered not too close to the Curie pointdampml casey_yM s<1. . o
The equation of motion for the magnetization

T, as a vector of fixed lengtfiM|=M(T), whose direction 3 : ]
can fluctuate due to the thermal agitation. This fluctuative|<||VI Zle_zrifv OEI} de’;l(Ir(n’\:’zt)G)O;r?g ﬁ;ii?:%fnfq particles can be eas
motion of M can be described semiphenomenologically with y '

the help of the stochastic equation

d
a<M>: Y[M X Heg]) = YA{[MX[M X Heg]]) — An(M)

M=y[MX (Het+ O)]—R(M), 2.1 08

wherey is the gyromagnetic ratio, T .
[cf. (2.2)], where the characteristic diffusional relaxation rate

oW Ay is given by
Her= = = W=—H-M—KM? (2.2)
An=T1y1=29ATIV. (2.9
are the effective field and the energy densityis the exter- . . .
nal magnetic field, an& is the uniaxial anisotropy constant. ON€ can see that even in the case without anisotropy

The energy of a particle is given by Hes=H, this equation is not closed since it is connected to
the second-order correlation function@;M;) in the
H=VW, (2.3 Landau-Lifshitz term of(2.8). Therefore, the resonance and

relaxational behavior of the Fokker-Planck equati@re) is
whereV is the particle volume. The correlators of different in generalnot described by Lorentz and Debye curves, and
components of the white-noise fiedt) can be conveniently the deviations from the latter can be about [7£8]. Neglect-
written as ing these features, one can obtain best isolatedequation

of motion for the magnetization of an assembly of particles

<§,(t)§,(t,)>:£5u S(t—t') (2.4) in the isotropic cas& =0, choosing the distribution function
A yw ' ' in the form f(N,t)cexdVA(t)N/T] [cf. (2.7)], where the

temporal evolution of the vectok(t) is governed by(2.8).
The relaxation ternR in (2.1) describes, likd, the influence  sych a generalized Landau-Lifshitz-Bloch equatifi8]
of the heat bath on the particle and, as we shall see immediontains both transverse and longitudinal relaxation terms. In
ately, it has the Landau-Lifshitz forfi 7] the high-temperature limitin the isotropic cas& =0 this
requiresT>VHM,) Eq. (2.8) becomes closed and takes on

R=YNMX[MXHeq]]. 29 the form of the Bloch equation with the relaxation rate
The Fokker-Planck equation corresponding2d) is for- Ay.
mulated for the distribution function
f(N,t)=(8(N—M(t))) on the spheréN|=Mg, where the Ill. THE LOWEST EIGENVALUE A; AND THE
average is taken over the realizations¢oDifferentiating f INTEGRAL RELAXATION TIME  7jy

over t with the use of(2.1) and calculating the right-hand
side of the resulting equation analogously to the derivationﬁe
given, e.g., in Refd.18,19, one comes to the Fokker-Planck

To parametrize effects of thermal agitation on ferromag-
tic particles, it is convenient to introduce the dimension-
less energu="H/T=VW/T, which in the case with a lon-

equation gitudinal magnetic field has the form
of J YAT Jd 2
. _ RN — u=—&—ax*, x=co¥=M,/Mg, 3.1
o o | YINX Her] = R(N) + == | N NXaN} f. 3 2/Ms (3.9
(2.6 with
One can easily see that the equilibrium distribution function VHM, VKM? .
= a= . .

fo(N)cexd —H(N)/T], (2.7) T T
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The top of the barrier corresponds to nient than that of Refs[14,16 since here the amplitudes
: H A qbey the fsuTAr]r)uIeZiAizl. Now 7, of (3.7) can be
X=Xp=—h, hEZ: SR 33 rewritten as(cf. [
The barrier heightu=u(x,))—u(—1) is given by TimZEi AN 3.9
Au=a— &+ & (4a)=a(l1—h)%. (3.9

In Refs.[14,16] the integral relaxation time;,; is called the
correlation time since according to the fluctuation-dissipation
theorem;,; can be also considered as the area under the
autocorrelation function. The term “correlation time,” how-

relaxation of any initial state is described by a sum of expo - )
nentials of the type\;exp(— A t), whereA, are the eigenval- ever, seems to be rather artificial because the autocorrelation
' o ' function does not appear in the actual calculatior;gfwith

ues of the Sturm-Liouville equation associated with the §
Fokker-Planck equatioffor the longitudinal relaxation all the help of(3.7) or (3.9, as well as in Sec. IV below, and
A, are redl. In the low-barrier case, £<1, the problem can really con3|der|ng autocorrelations would |mply going un-
be solved perturbativel§g] and the longitudinal relaxation is "€cessarily beyond the Fokker-Planck equation. .
governed with a good accuracy by the single exponential According to the numerical results of Coffey al.[14] in

corresponding to the lowest eigenvaltig, which is given & 2€r0 magnetic field the amplitudey satisfy Aj<A,,
by [3] i=2,3,..., for all values ofa and the difference between

A; and ri;tl is small everywhere reaching only 1.2% at
a=5. On the contrary, the subsequent calculationsHor
#0 [16] revealed a striking behaviot !> A ; at sufficiently
low temperatures. The formal reason for this is tAgtbe-
with Ay determined by2.9). comes small in this region and the terms wktk 4,5 domi-

In the high-barrier case>1, the relaxation is dominated nate in(3.9), as shown in Ref.16]. But the effect can also be
again byA; describing now the slow overbarrier thermoac- interpreted on a physical level as the consequence of the
tivation, whereas all other eigenvaluas correspond to the depletion of the upper potential well and quantitatively de-
fast intrawell processes with small amplitudes. Brown’s re-scribed without a general calculation ff;, as will be dem-
sult for the high-barrier case, which was derived with theonstrated below.
help of the transition-state method of Kram¢#d, can be The reduced equilibrium magnetization of an ensemble of
written in the form[6] noninteracting ferromagnetic particlem,=(M,)/M; is

iven by the generalized Langevin functi ,a):
Ay =Aym Y2031~ h3){(1+h)exd — a(1+h)?] Juen by e J 8t )

In the casewa,é~1 a general solution of the Fokker-
Planck equatior(2.6) cannot be found analytically and the

A=Ay 1- 2at o g2t & g2 3
=AM ITgatgee g o) (39

+(1-h)exd — a(1-h)?]}, (3.6 mzzf1 xfo(x)dx:a%an=B(§,a), (3.10
-1

where h is given by (3.3). The factor (&h) before the
exponential function i3.6) is irrelevant since the first term Wwhere, according t¢2.7) and(3.1),
of (3.6) is only essential foé=<1 which for a>1 implies 1 - .
h<1. We W|II3 however, keep this factor here and in analo- fo=sexp(—HIT)=—, Z_f e Udx. (3.11)
gous expressions below for the sake of symmetry. z -1
In the intermediate region, £~ 1, it is convenient to in-
troduce the integral relaxation time determined as the arebn the high-barrier case> 1, the partition functiorZ is a
under the magnetization relaxation curve after a sudden irsum of two contributions corresponding to the two potential

finitesimal change of the applied field by AH att=0: wellsz=z2,+2_,
[ M=) = (My(D)) et 2a
Ti= fo d M=) —(M,(0)) (3.7 Z.,= 2atE 1+ (2ai§)2+ o, (3.12

Unlike A4, the integral relaxation timer,,; can be found where the correction terms account for the curvature of the
analytically from the Fokker-Planck equatid@.6) in the  potential-energy functiom of (3.1). Neglecting these small
whole range of parameters in the geometry with a longituditerms, one can represeB{é, «) of Eq. (3.10 by two mutu-

nal magnetic field13], as will be described in detail in Sec. ally complementing expressions

IV. Here we discuss the results of recent calculations of

Tine Dy Coffey et al. [14,16]. At first note that the relaxation _ 4
curve can be represented in the form B¢, a)=tankg 2a\ cosfé *tanfe ]+ (2a)?
(3.13
<Mz(°°)>_<Mz(t)>=AHXin At (38 gy 1~¢<a and
wh.ere)(z= a{MZ)./.aH is the static Iongitudjnal_susceptibility. B(f,a)El—Ze_2§2a+§ B 1 (3.14
This form of writing the response function is more conve- 20— ¢ 2a+€
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my(e=)-my(t) (arb. units) is the te_mperature—independent relaxation rate i_n the lower
Th elization relaxation curve well, which can be obtained from the deterministic Landau-
. imﬁ.gh barri bi Y ] Lifshitz equation(2.1) and (2.5 without . The integral re-
08 in the high-barrler strong-bias case: laxation timer;,, calculated according to the definiti¢8.7)
- the 1n.trav§/ell (1) and overbarrier (2) can be written as
contributions,
06 Amp<<Amy, A<<l/ty Tint= Tint.8 T Tintw » (3.19
041 1 - Ay exp(-t/ty) where
2 - Amp exp(—tA;) B! B!
3 - the total relaxation curve B, — W, _
0.2 Tint,Bngl ' Tint,wzgf\wl- (3.20
005 4 s s 10 One can see that in the low-temperature strong-bias case
t (arb. units) a,&>1, the barrier contributior;; g into the integral relax-

ation timer,,; can be substantially reduced due to the deple-

FIG. 1. Schematic look of the two-exponential relaxation curvetIon of _thle uppﬁr poten;lalhwell ma”'f?s“'."g 'tsﬁlf In thﬁ ex-
of single-domain ferromagnetic particles in the strong-bias highponentla_ sma n_e_ss of t e/magnetlzatlon C_ ange due to
barrier caser,é 1. overbarrier transitiond mg=Bg [see(3.15]. In this case the

overbarrier and intrawell terms i(8.19 can compete with
for 1<&~a. Here, in the first limiting expression the second €ach other sincé, is exponentially small and,,/B’=1.
term is small and irrelevant; the third term is kept since itOn the contrary, for small or zero bias one I&gB’'=1
yields a contribution to the derivati®’ = 9B/d¢ that is not  and By,/B’<1, so that the intrawell process can be com-
exponentially small fog>1. In the second limiting expres- pletely ignored.

sion (the strong-bias cagehe deviation ofB from unity The expressions fori, g and 7w in (3.20 are valid in
separates into two parts: The second exponentially smathe whole high-barrier region®2— £>1 and will be obtained
term is due to the population of the upper weli—1), independently in the framework of a general method in Sec.

whereas the third one accounts for the thermal agitation inV. In the strong-bias casé>1, the barrier contribution
the lower well k~1). The response of magnetization to an i g in (3.20 can be represented with the use &£6),
infinitesimal change of the magnetic fieltH is related to  (3.15, and(3.3) as

the derivative of the generalized Langevin functi@i:

Am=B'AH/T. The latter can be determined fro(83.13 (1+h)?

- -1 12 2
and (3.14 and put in the whole region®— £>1 into the Tinp = 16AN (7 @) (1_h)?exq“(1_6h+h )]
unique expression (3.21
B'=B.+B/ ~ 1 2a+é n 1 It changes its behavior as a function®fat the critical value
— B wW— 2 . .
cosifé 2a— ¢ (2a+¢§) of the applied field
1-h? 1

= h=h.=3-2y2~0.17, 3.2
=cen 2t o (319 3R 922
which is substantially smaller than the field of the barrier
disappearanck=1 [see(3.3) and(3.4)]. Forh in the vicin-
1 ity of h, the exponential factor i3.21) can be written as
c(ém=3[(1+ h)e ¢+ (1—h)ef] (3.16  exd—4J2a(h—hy)]. It can be seen that fdr<h, the quan-
tity 7 g €xponentially increases with lowering temperature
(i.e., with increasing ofx) and brings the dominant contri-
bution into 7, of Eq. (3.20. On the contrary, foh>h, the
quantity 7, g exponentially decreases at large so that
Tie tends to the temperature-independent vailtg,y of
(3.18. One can also see that faronly slightly higher than
h, the quantityr,, g increases ag'/? at smallere; then the
decreasing exponential becomes to dominate. Thus, in this
caseriy g, and hencery of (3.20, has a maximum at some
a>1 and Ti;tl has the corresponding minimum, as was ob-
_ _ _ _ tained numerically in Ref.16]. It should be noted, however,
M%) = M(t) = AMgexp —tA 1) + Amwexp( tAVE’:);’ 17  that the actual p}(;sition of this minimum can be described
' only taking into account in3.20 the general form oB’
whereA ; is given by(3.6) and given by (3.19.
The results above completely describe the observations
Aw=2yANHg=AnN(2a+ §) (3.18 made in Ref[16] in the low-temperature strong-bias region.

where

and B accounts for the redistribution of particles between
the two wells across the potential barrier @ that inside
the lower well. Henceforth we will use the second of the
equivalent forms oB’ in (3.15 for the sake of symmetry
[cf. the comments after E¢3.6)].

Now, in the low-temperature strong-bias casé>1, the
relaxation curvg3.8) consists of only two exponentialsee
Fig. D
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In the next section we present the analytical calculation ofation of the susceptibility4.3) one gets the analytic expres-

Tint IN the whole range of parameters. sion the for integral relaxation time,, [13]:
2 1 dx
IV. CALCULATION OF THE INTEGRAL RELAXATION — J' 2 -1
T = ; dA(x)f, (%), 4.6
TIME o int ANB 1 X2 ( ) 0 ( ) ( )

All the information about the relaxation curv@.8) is  wheref, is given by(3.11), B’ =dB/d¢, and

contained in the longitudinal linear dynamic susceptibility

x(w). In the presence of a small alternating field x , N

AH,(t) = AH,gexp(—iot) the deviation of the distribution ‘D(X):f,l(B_X )To(x7)dx". 4.7

function f from the equilibrium function(3.11) can be rep-

resented as Recalling the general formula f&( ¢, «) Eq.(3.10, one can
conclude thatb(+1)=0, i.e., the integrand a#.6) goes to

of =fo(X)q(X) VMsAH(t)/T, (4.)  zero atx==*1. The functiond(x) can be easily calculated

_ - _ . analytically in two particular cases. In the unbiased case
where the functiorg(x) satisfies an equation following from ¢=0 one gets

(2.6):
d d D00= = [foD)- Fo0],  fa0= T
X)=— —fo(x)], X)=——,
O ax+ £ (1-x) 1 2iwA L 2a5 07 0 ° Z(a)
dx dx (4.9
=(1-x?)(2ax+£)—2x. (4.2 whereas in the isotropic case=0
The dynamic susceptibility of the particle’'s assembly is then fo(X) exp(— &x)
determined by O(x)= : cothé —x— ~einte (4.9
VM2 (1 . B . . . ]
o) = Sf dxfo(X)q(X). 4.3 with f_o(x)—gexp@x)/(ZSlnr_f). An aIterEaUve analy_tlcal ex
T )1 pression forr, in the particular cas¢=0 was derived re-

cently by Coffeyet al.[14] with the help of the development

Using the linear-response theory one can easily show thaif the solution of the Fokker-Planck equation in Legendre
xz(w) can be represented in the form polynomials. Their expression contains Kummer functions
and is essentially more complicated th@n6) with (4.8).

Now we proceed with the analysis of the general expres-
sion (4.6) in different limiting cases. In the high-temperature
limit «,£<1, the calculation can be done perturbatively with
wherey,, A;, andA, are the parameters of the magnetiza-respect toe and £. In particular, at very large temperatures
tion relaxation curve(3.8). Calculating this sum of Debye one hasfqy(x)=1/2, B=0, B'=1/3, and ®=(1—x?)/4.
terms requires knowing all eigenvaluds and amplitudes Thus the whole phase space of the ferromagnetic particle,
A; associated with the Fokker-Planck equation and cannot be 1<x<1, contributes to4.6) and one gets-i;,tleN. A
done analytically in the general case. Accordingly, Eq2) more accurate calculation yields
has no general analytical solution and its behavior is to be
studied analytically in the limiting cases of high and low
temperatures and high and low frequencies, as was done in
Ref. [13]. In particular, generating high-frequency expan-
sions ofy(w) does not require solving differrential equations which is very close to Brown’s expression fdr, given by
and can be carried out up to high orders. The correspondin.5).
results, however, are not very interesting here since they de- In the unbiased low-temperature cage 0, a>1, the
scribe only fast intrawell processes. The information aboufunction® given by(4.8) is constant in the main part of the
the slow process of thermoactivation is contained in the lowx interval, except for near the borders. Thus the main contri-
frequency expansion of(w), which can be written in the bution to the integral4.6) comes from the barrier region
form x~a~Y2<1 cut by the functionf ; *ocexp(— ax?). With the

use of(3.12 with £=0 one gets, in the leading order,

XA )= X220 (4.4)

i
i 1—ia)Ai_l'

rl=A 1—ga+3a2+1§2+~~ (4.10
TN 5T 35T T g '

XA @)=xA(1+ioTg+ ). (4.9
Tni =2Aym Yo%, (4.1

Comparing(4.5) with (4.4), one can show that the quantity
Tint IN (4.5) is exactly the integral relaxation time given by which coincides with the expression fdr; in (3.6) in the
the formula(3.9). unbiased casé=0. It is not difficult to calculate also the

The perturbative solution @#.2) for smallw can be done correction terms for the formulg.11), which coincide with
analytically since form=0 there are only terms of the type those given by Browi7]. In the isotropic strong-field limit
g’ (x) andg”(x) in the equation. Hence one can introduce aa=0, £>1, the function® given by (4.9), as well as the
new variableg(x)=q’(x) and solve successively the first- whole integrand of(4.6), is peaked in the vicinity of the
order differential equations fag(x) andqg(x). After calcu-  potential minimunx= 1, where the exponentially small term
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ZO* () [fox)(1-x)] o Ay
15
20 h=035 | Integral relaxation time t
a=204&= 0,5, 10, 15,20 of single-domain ferromagnetic particles,
40T Jabeled by
ok 20 F h=E/(200=0,0.2,0.3,0.4, 1,00
0
a
15
201
st
_ 10 10k
5 15
0 o
-1.0 -0.5 0.0 0.5 1.0 0 10 20 30 40 50
X a =20+

FIG. 2. Integrand of the formul@&.6) for the integral relaxation
time 7 for different values of parameters.

with exp(—£x) can be neglected. In the leading order one
gets forri;t1 the temperature-independent expresdi®i8
with a=0.

Now we consider, as a corollary, the biased low-
temperature casé+0, a>1. As argued in Sec. lll, in this
caserj, can be the sum of intrawell and overbarrier contri-
butions, 7iy v and 7 g [se€(3.19]. Accordingly, the inte-
grand of(4.6) can consist, fow, &> 1, of two peakgsee Fig.

2) corresponding to the barrier top-x,,= —h in (3.3) and
the lower wellx~1. The function®(x) of (4.7) is deter- 0.0 e —
mined by two well-separated potential wells and is therefore 0 10 20 30 M= 20ee
practically independent of for x not too close to the bound-

aries. In the the lower-well region-ix<1, the calculation FIG. 3. Inverse of the integral relaxation timeas a function of

yields ®(x) as a sum of two contribution®=®g+®\,  the parametea of (4.16. Circles denote data of Coffest al. [16]
where to the leading order taken from their Table II.

1—h2 In (4.19 [cf. (3.18] the correction terms, in particular of the
Dg(x)= m{l—exr{—(bﬁ &(1-x)1}, (4.12  type present ir3.12, have been taken into account.
' Numerical calculation of the integral relaxation timg,
i given by (4.6) in the whole range of parametets and ¢
c(¢h) is given by(3.16, and poses no difficulties. For the representation of the results for
the arbitrary relation betweea and ¢, including the case

Pw(x)=(1=x)exd = (2a+£)(1-x)). (413 =0, it is more convenient to use the variable

The term®g of (4.12 goes over to the constant mentioned s

above in the region not too close to the border a=2a+¢= ST “R (4.16
[1-x>1/(2a+ £)<1]. Foré>1 it acquires the small factor

e~ 2¢ accounting for the depletion of the upper potential wellywhere wr=Y(2KM¢+H) is the ferromagnetic resonance
[cf. (3.19 and(3.20]. On the contrary, such a factor is not frequency in the lower potential well. One can see that
present ind,y in (4.13, but the corresponding contribution 24=a/(1+h) and¢=ah/(1+h). In terms of the variables
into 7, given by (4.6) is reduced due té, '(x). Now cal-  a andh the asymptotic formuld4.15 can be rewritten as

culating the integra(4.6) one gets Eq(3.19, where Triw=An[a— (5+h)/(1+h)], which shows that all curves
Tiniw(@) for differenth are parallel to each other. The results
By 72 exda+t & (4a)] of the numerical integration in the formuld.6) are repre-
TintB= BT 2Ana®?  (1—h?)c(&,h) 414 sented in Fig. 3. These results confirm all the considerations

made above, as well as the numerical findings of Coffey

coincides with the expression given 8.20 and in the et al.[16].

strong-bias case
V. DISCUSSION

3

The formula for the integral relaxation time, of an
2at ) (4.19

2at - assembly of single-domain ferromagnetic particlés) is

1 A~
Tint, W— Aw=Ay
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the all-temperature solution of the problem of the thermoaciongitudinal dynamic susceptibility were studied analytically
tivation escape rate of the particles over a potential barrierin Ref.[13], where it was shown that these deviations can be
In the unbiased casg=h=0, the quantityr;, is very close about 7% até~3. In Ref.[13] an effective two-relaxator
in the whole temperature range to the inverse of the lowestormula for y,(w) was proposed, which was argued to de-
eigenvalue of the Fokker-Planck equatidn. Besides, in  scribe the main part of deviations from the simple Debye
comparison to the latter;,, has more physical significance form. It would be interesting to check and improve these
and is given by a simple quadratu@.6) with (4.8). In the  yegylts by a direct numerical calculation.
high-barrier strong-bias casg¢>1, as a result of the deple-  one more unsolved problem is the calculation of the
tion of the upper potential well the relaxation is described byiransversentegral relaxation time of superparamagnetic par-
two exponentials with uncomparable characteristic timesgjcles. Up to now it seems to be considered only for the
which correspond to the intrawell and overbarrier processesnodel of rotating dipoles in Ref15].
In this case it would be naturally an oversimplification to  Ajthough many experimental investigations are currently
describe the relaxation with a common integral relaxationgone on systems showing superparamagnetism, these inves-
time, but it is possible to separate analytically both contribu+igations are practically confined to the certification of a su-
tions in the general formuled.6) [see(4.14 and(4.15] and  perparamagnetic behavior and to rough estimation of relax-
thus to give a complete description of the relaxation processtion times. It would be worth making more purposeful
Going beyond the integral relaxation time, one can conmeasurements aimed at a comparison with existing theories.
ceive the calculation of the whole dynamic susceptibility For this purpose it would be important to eliminate the dis-

xz(w) given by the formulg4.4). In this case the numerical tripution of particle volumes and orientations of the anisot-
approach of Ref[16], consisting of the calculation of all ropy axes.

A; and A, is really useful. However, for the model with a
high potential barrier such a calculation is probably not very
interesting for the reasons mentioned above: there are, to a
good accuracy, only ong@n the unbiased cager two (in the
strong-bias cagderms in(4.4). More appealing would be to The author thanks Hartwig Schmidt for valuable discus-
produce calculations for an isotropic model in a fieldsions. The financial support of Deutsche Forschungsgemein-
(=0, £#+0) where the eigenvalues; are not so well sepa- schaft under Contract No. Schm 398/5-1 is gratefully ac-
rated. In this case deviations from the Debye form of theknowledged.
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